elrond1_2eleven (elrond1_2eleven) wrote,
elrond1_2eleven
elrond1_2eleven

Category:

Полный курсъ часоваго мастерства Ю. Гене (II 46-53, III 54-57)

Альбом чертежей

Темы поста: зубчатые зацепления, измерения, общий расчёт механизма, маятничные часы, привод пружиной и гирей, храповик привода.

46.

Изъ описаннаго чертежа ясно вытекаетъ доказательство выше сказанного об эйнгрифе въ трибку съ незначительнымъ числомъ зубцовъ. Эйнгрифъ, какимъ онъ начерченъ здесь, показываетъ прикосновенiе зубцовъ колеса и трибки на центральной линiи; но предыдущiй зубецъ колеса уже заранее долженъ былъ оставить зубецъ трибки, ибо они оба уже не соприкасаются. Следовательно уже до центральной линiи происходитъ короткое веденiе, т. е. ещё до того момента, когда эйнгрифъ принялъ это положенiе; это-то обстоятельство и делаетъ эйнгрифъ въ трибку о менее чемъ 12 зубцахъ, несовершеннымъ. Конечно это веденiе до центральной линiи при трибке о 10 зубцахъ такъ незначительно, что ошибку едва-ли удастся пояснить чертежомъ. Между темъ это веденiе до центральной линiи при трибке о 6 зубцахъ должно стать темъ значительнее. Эйнгрифъ (таб. II фиг. 7) мог-бы быть изменёнъ различными способами такъ, что первое прикосновенiе произошло-бы на центральной линiи. Теоретически это можетъ произойти только при удлиненiи кривой закругленiя зубцовъ, каковое измененiе, само-собою разумеется, требуетъ и большую ширину колёснаго зубца. Но по этой причине промежутокъ между захватывающими зубцами значительно уменьшается, въ виду того, что и зубцы трибки для своей стойкости должны иметь некоторую толщину. Изъ этого-же видно насколько вредна для эйнгрифа лишняя толщина зубцовъ трибки.

Но есть ещё и другой способъ, которымъ можно устранить веденiе до центральной линiи. Представимъ себе на фиг. 7, что колесо и трибка сближены ещё больше, то предшествующiй зубецъ колеса коснётся соответствующего зубца трибки. Но черезъ это уменьшился-бы, по-первыхъ, промежутокъ между захватывающими зубцами, а во-вторыхъ произошёл-бы, отчасти по крайней мере случай, на который намекали въ фиг. 5 на левой стороне, и который начинающимся у действующаго круга трибки закругленiемъ зубцовъ долженъ устраниться. Если центры колеса и трибки настолько сближены, что ихъ действующiе круги пересекаются, то часть прямого фланка колёснаго зубца прилегаетъ къ прямолинейному фланку зубца трибки, и действiе будетъ происходить при меняющейся длине рычаговъ.

Следующiй способ къ устраненiю веденiя до центральной линiи состоял-бы въ уменьшенiи размера трибки, такъ какъ въ этомъ случае разстоянiе отъ одного зубца трибки до другого было-бы также уменьшено. Конечно нетъ надобности въ дальнейшемъ разъясненiи того, что въ приведённыхъ двухъ последнихъ случаяхъ пропадётъ условiе совершеннаго эйнгрифа, — а именно неизменяющаяся оборотная скорость действующихъ круговъ, находящихся въ верномъ отношенiи между собою. Отсюда легко понять, что закругленiе зубцовъ при эйнгрифе съ другимъ отношенiемъ зубцовъ и величины обоихъ колёсъ также должно быть другое, и что для каждаго другого эйнгрифа нужно особо вычертить какъ эпициклоиду, такъ и рисунокъ эйнгрифа. Очень интересно и поучительно составлять чертежи къ различнымъ эйнгрифамъ по вышеописанному объясненiю. При чёмъ следуетъ выбирать самыя разнообразныя отношенiя эйнгрифа, какъ они встречаются въ часовомъ механизме. Это будетъ хорошимъ вспомогательнымъ средствомъ для основательнаго усвоенiя точной формы зубца колеса и трибки, чтобы при случающихся ошибочныхъ эйнгрифахъ определить, какъ легче исправить ошибку, и не попасть на ложный путь, какъ это, къ сожаленiю, часто случается у незнающихъ. Какъ дальше будетъ показано, приведенiе каждаго эйнгрифа въ обыкновенныхъ часахъ въ математически точную форму повело-бы слишкомъ далеко и было-бы по большей части неисполнимо, но въ некоторыхъ случаяхъ исправленiе эйнгрифа необходимо и возможно, если только приступить къ делу съ надлежащими знанiями.

47.

Между различными ошибками въ эйнгрифе особенно выделяются две формы, которыя часто встречаемъ при работе и которыя легко распознать въ фиг. 8 и 9 таб. II.

Хотя въ фиг. 8 относительныя величины колеса и трибки и верны, но разстоянiе эйнгрифа черезчуръ велико, т. е. оба центра очень отдалены другъ отъ друга. Вследствiе этого, какъ видно изъ рисунка, оба действующiе круга отодвинуты одинъ отъ другого, и зубецъ колеса не касается трибки фланкомъ, а только ещё закругленiемъ. Такъ что предшествующiй зубецъ колеса не ведётъ трибку достаточно далеко и следующiй зубецъ очень рано приходитъ въ соприкосновенiе съ следующимъ зубцомъ трибки, отъ чего происходитъ сильное входящее тренiе, которое часто, если сила достаточно велика, чтобы преодолеть сопротивленiе, ведётъ за собой стиранiе колёснаго зубца, который скоро покажетъ выбоинку на закругленiи. Передача силы при помощи такого эйнгрифа очень неравномерная. Особенно при вышеозначенномъ положенiи перваго прикосновенiя, входящее тренiе отнимаетъ большую часть действующей силы, такъ что часовой механизмъ продолжаетъ действовать съ весьма ослабленной силой или даже остановится. Такой эйнгрифъ называютъ мелкимъ и обозначаютъ то вышеописанное положенiе эйнгрифа, при которомъ зубецъ трибки упирается о закругленiе зубца колеса — сильнымъ входящимъ тренiемъ. Разсматриваемая ошибка всегда связана со значительнымъ промежуткомъ между захватывающими зубцами.

Есть другая ошибка, которая по действiю сходна съ предъидущей — это несоразмерно большая трибка. Разница въ действiи состоитъ только въ томъ, что здесь сильное входящее тренiе продолжается и тогда, когда промежутокъ между захватывающими зубцами едва достаточный. Обе ошибки вместе — очень мелкiй эйнгрифъ и очень большая трибка — действуютъ, конечно, вдвойне пагубно.

Совершенно другого рода ошибка представлена на фиг. 9 таб. II. Здесь трибка мала и следовательно разстоянiе отъ площади прикосновенiя до площади прикосновенiя (деленiе) у трибки меньше, чемъ у колеса. Если, следовательно, предшествующiй зубецъ окончилъ своё веденiе, то следующiй зубецъ колеса ещё на некоторомъ разстоянiи позади отъ зубца трибки. Вследствiе этого предшествующiй зубецъ колеса проскользнётъ ускореннымъ движенiемъ мимо закругленiя зубца трибки, и если следующiй зубецъ при этомъ ещё не достигъ трибки, то последуетъ свободное спаденiе колеса, сопряжённое съ толчками. Поэтому эту ошибку называютъ — нахфаль (или говорятъ — эйнгрифъ западает). Вследствiе этого сила, передаваемая трибке, во время веденiя сравнительно слабее, такъ какъ действуетъ на более короткое плечо, между темъ какъ, такъ сказать, сбережённая сила затрачивается при свободномъ, сопряжённомъ съ толчками, паденiи, а при ускоренномъ скольженiи приходитъ въ действiе на короткiе промежутки времени въ более значительныхъ размерахъ. О последствiяхъ, вызванныхъ описаннымъ недостаткомъ въ ходе часовъ, будетъ сказано далее. Свобода между зубцами при этой ошибке не везде одинаковая, смотря по положенiю эйнгрифа, иногда, какъ при положенiи въ фъ. 9, весьма незначительная, а въ случае, если одинъ только колёсный зубецъ находится между двумя зубцами трибки, то имеется значительно больше свободы. Если зубецъ колеса имеетъ надлежащую толщину, то въ первомъ случае свобода между захватывающими зубцами совершено пропадаетъ.

Исправить эйнгрифъ въ этомъ случае нельзя, приходится заменить трибку новою. Если раздвинуть эйнгрифъ, то онъ будетъ сопровождаться сильнымъ входящимъ тренiемъ, если его сдвинуть, онъ западаетъ, а при среднемъ разстоянiи онъ склоненъ какъ къ одному, такъ и къ другому. Устанавливая эйнгрифъ глубже, онъ при начерченномъ въ фиг. 9 положенiи можетъ совершенно замкнуться, вследствiе полнаго отсутствiя свободы между зубцами. въ такомъ случае предлагается большая предосторожность, и если ошибка переходитъ допускаемую границу, то всегда следуетъ трибку заменить другою подходящей величины.

Другiя ошибка эйнгрифа исключительно происходятъ отъ неправильной формы зубцовъ. Эйнгрифъ съ точнымъ отношенiемъ частей и точною формою зубцовъ не можетъ, напримеръ, западать, если его конечно не установить такъ глубоко, что будетъ отсутствовать свобода между зубцами. Если-же колесный зубецъ сделать тонкимъ, то можно будетъ заметить все те-же явленiя, какъ и при очень малой трибке. Толстый колёсный зубецъ наоборотъ ведётъ неминуемо за собой сильное входящее тренiе. Не менее вредна недостаточная закруглённость зубцовъ.

Можно было-бы зайти очень далеко, если выяснить здесь все отступленiя. Пусть лучше собственное наблюденiе при вниманiи и обдумыванiи докончитъ остальное. Во всякомъ случае необходимо много практическаго упражненiя, чтобы найти и исправить подобнаго рода ошибки.

48.

Величину трибки обыкновенно определяютъ темъ, что отсчитываютъ по окружности колеса полагаемое на трибке число зубцовъ и принимаютъ полученное такимъ способомъ разстоянiе за полный поперечникъ трибки. Но это весьма нестойкое определенiе, которое основано на приблизительныхъ только вычисленiяхъ, кои для заботливаго работника недостаточны. Более точнаго результата можно добиться определенiемъ поперечниковъ действующихъ круговъ, которые должны относиться какъ числа зубцовъ колёсъ. Конечно нельзя сразу измерить поперечникъ действующаго круга, такъ какъ переходъ отъ фланка зубца къ закругленiю его конца не представляетъ точно определённой границы для измеренiя, но будетъ весьма малая ошибка, если считать высоту закругленiя конца зубца равнымъ ширине зубца, а следовательно также и въ томъ случае, если ихъ полнаго поперечника вычтемъ двойную ширину зубца, чтобы определить поперечникъ действующаго круга. Въ трибке съ полукруглымъ концомъ зубцовъ, какъ это обыкновенно принято, закругленiе уходитъ конечно за концы поперечника действующаго круга на половину ширины зубцовъ трибки.

Необходимо следовательно къ найденному черезъ отношенiе чиселъ зубцовъ поперечнику действующаго круга прибавить ширину зубца трибки или 2/3 ширины колёснаго зубца, чтобы получить полный поперечникъ трибки.

49.

Дело иного рода, если колеса нетъ, такъ что и нельзя будетъ измерить ширину зубца, а приходится вычислять по данному полному поперечнику колеса. Поперечникъ круга или дiaметръ относится къ окружности круга какъ 1 : 3,14, но, если-бы по этому отношенiю вычислить окружность колеса и выполнить на ней деленiя, то получилась-бы слишкомъ большая ширина зубцовъ, такъ какъ деленiе лежитъ на меньшемъ, — действующемъ кругу. При употребительномъ въ часовомъ мастерстве большомъ числе зубцовъ на колёсахъ, отношенiя настолько выгодны, что для уравненiя вышеозначенной разницы стоитъ только отбросить 0,14 и принять приблизительное отношенiе полнаго поперечника колеса къ действующему кругу какъ 1 : 3, причёмъ при вычисленiи ширины зубцовъ не можетъ произойти существенной ошибки. Помножимъ полный поперечникъ на 3 и если потомъ разделимъ найденную такимъ способомъ длину окружности на удвоенное число зубцовъ (зубцы и промежутки), то получимъ отыскиваемую ширину зубцовъ. Эта последняя служитъ намъ для определенiя поперечника действующаго круга. который короче полнаго поперечника на удвоенную ширину зубца. Для колёсъ съ незначительнымъ числомъ зубцовъ выше принятое отношенiе не пригодно, такъ какъ оно дало-бы черезчуръ большую ширину зубцовъ.

50.

Вычисленiе величины колеса и трибки при данномъ разстоянiи эйнгрифа очень легко. Последнее составлено изъ радiусовъ действующихъ круговъ обоихъ колёсъ. Эти последнiя относятся подобно поперечникамъ действующихъ круговъ, какъ числа зубцовъ колеса и трибки. Положимъ, что отношенiе обоихъ чиселъ зубцовъ есть какъ 60 : 8 или 15 : 2, тогда отношенiе разстоянiя эйнгрифа къ радiусу действующаго круга колесе есть 17 : 15, а къ радiусу действующаго круга трибки 17 : 2. Если изъ перваго отношенiя найденъ радiусъ действующаго круга колеса, то умножавшiй удвоенный радiусъ, или что тоже, поперечникъ действующаго круга на 3,14 — получимъ окружность действующаго круга. Этотъ последнiй, разделённый на удвоенное число зубцовъ, дастъ ширину колёснаго зубца, которая, будучи удвоена и прибавлена къ поперечнику действующаго круга, дастъ полный поперечникъ колеса. Полный поперечникъ трибки, какъ известно, можетъ быть полученъ путёмъ сложенiя поперечника действующаго круга съ 2/3 ширины колёснаго зубца.

51.

Само-собою разумеется, что точное измеренiе при вычисленiи можетъ сделать только тотъ, который имеетъ подъ рукой подходящiе измерительные приборы. Достаточны въ этомъ отношенiи десятичный циркуль и калибромеръ.

Десятичный циркуль, фиг. 3 таб. XII, есть родъ щипцовъ, рычаги которыхъ неравноплечи, такъ что величина, заключенная между короткими концами, указывается однимъ изъ длинныхъ концовъ, двигающимся по дуге, прикреплённой къ другому длинному концу и разделённой на десятые миллиметра.

52.

Другой приборъ, калибромеръ, фиг. 1 таб. XII , есть масштабъ, у котораго измеряемый предметъ заключается между двумя ножками, изъ которыхъ одна подвижная. На линейке у неподвижной ножки нанесены деленiя. Чтобы при помощи этого прибора возможно было измерять длину въ двадцатыхъ доляхъ миллиметра — къ подвижной ножке приспособленъ нонiусъ. Это есть масштабъ, на которомъ нанесено двадцать деленiй. Деленiя эти на 1/20 меньше деленiй главнаго масштаба, т. е. девятнадцать миллиметровъ на нёмъ разделены на двадцать частей, которыя для сравненiя могутъ быть подвигаемы вдоль главнаго масштаба, прикасаясь къ нему непосредственно. При измеренiи первая черта нонiуса указываетъ число миллиметровъ на главномъ масштабе, а черта, которая совпадаетъ съ деленiями последняго — двадцатыя доли.

Если напримеръ разстоянiе между ножками равно 207/20 м/м, то первое деленiе нонiуса находится между 20 и 21 деленiями масштаба, а седьмое деленiе его совпадаетъ съ однимъ изъ деленiй масштаба.

Оба эти измерительные прибора настолько необходимы часовыхъ делъ мастеру, что должны были-бы иметься у каждаго.

Расчётъ колёсныхъ механизмовъ.

53.

Шестерня по отношенiю къ захватывающему её колесу сделаетъ во столько разъ больше оборотовъ, во сколько разъ число зубцовъ шестерни меньше числа зубцовъ колеса или, какъ сказано раньше, число оборотовъ двухъ захватывающихъ другъ друга колёсъ обратно пропорцiонально числу ихъ зубцовъ. Если колесо въ 75 зубцовъ захватываетъ шестерню, имеющую 10 зубцовъ, то число ихъ оборотовъ относится какъ 10 : 75, следовательно, чтобы узнать, сколько оборотовъ шестерня сделаетъ при одномъ обороте колеса, нужно делить число зубцовъ колеса на число зубцовъ шестерни, т. е. шестерня сделаетъ 75 : 10 = 7½ оборотовъ.

Таким-же путёмъ можно высчитать сколько оборотовъ сделаетъ последнее колесо въ механизме, составленномъ изъ несколькихъ колёсъ, при одномъ обороте перваго колеса. Проще будетъ расчётъ, въ особенности при неправильных7 числахъ зубцовъ, если произведенiе числа зубцовъ всехъ колёсъ делить на произведенiе числа зубцовъ всехъ шестерней.

Предположимъ, что колёсный механизмъ состоитъ изъ трёхъ колёсъ, имеющихъ 75, 48 и 44 зубца, которыя захватываютъ шестерни, имеющiя 12, 10 и 8 зубцовъ, тогда (75 × 48 × 44) : (12 × 10 × 8) = 165 оборотовъ совершитъ последняя шестерня при одномъ обороте перваго колеса.

ОТДЕЛЪ ТРЕТIЙ

Маятничные часы.

54.

Маятникъ. Лучшимъ пособiемъ для измеренiя времени служитъ размахъ маятника, и въ часовомъ мастерстве даётся ему предпочтенiе передъ всеми другими качающимися предметами, потому что его качанiе равномернее и проще. Маятникъ представляетъ изъ себя подвешенное на нитке или подвижномъ стержне тяжёлое тело, которое, вследствiе полученнаго толчка делаетъ качающееся движенiе взадъ и вперёдъ. Движенiе маятника есть действiе силы тяжести или силы притяженiя земли, въ связи съ инерцiей телъ. Въ покое маятникъ находится въ вертикальномъ положенiи. Если его толчкомъ подвинуть въ одну сторону, то сила тяжести приводитъ его обратно въ прежнее положенiе. Но благодаря инерцiи онъ не остановится и будетъ продолжать качанiе, пока сила тяжести не преодолеетъ инерцiю. Качанiя маятника будутъ продолжаться. при последовательно уменьшающихся размахахъ, пока онъ не остановится. Инерцiя въ его движенiяхъ равна силе толчка, за исключенiемъ тренiя въ точке привеса и сопротивленiя воздуха. Если-бы имелась возможность подвесить маятникъ въ безвоздушномъ пространстве, устранивъ всякое тренiе въ его точке привеса, и таковой разъ толкнуть, то онъ качался-бы вечно. Но такъ какъ совершенное устраненiе тренiя невозможно, то нужно стараться способомъ подвешиванiя его и придавая ему форму, способствующую более лёгкому разсеченiю воздуха, довести тренiе до минимума. Изъ вышеизложеннаго явствуетъ, что маятникъ прекратитъ своё движенiе, если сила, которая поглощается хотя и незначительнымъ тренiемъ, не будетъ возобновляться механизмомъ часовъ. Какъ это возобновленiе силы происходитъ — мы впоследствiи увидимъ. Въ особенности нижней тяжёлой и довольно объёмистой части маятника необходимо придать форму, устраняющую по возможности противодействiе воздуха, при его движенiяхъ.

Более соответствующая форма для объёмистой части маятника — форма чечевицы. Чечевица маятника при его качанiи, по воздуху, описываетъ дугу, центръ которой находится въ его привесе: чемъ обширнее эта дуга, темъ больше чечевица маятника будетъ двигаться въ торону и темъ сильнее сила тяжести будетъ действовать при его обратномъ движенiи. Поэтому соразмерно обширности дуги растётъ скорость его движенiя, такъ что свободно подвешенный маятникъ большiя и малыя дуги описываетъ почти въ одно время; чемъ короче маятникъ, темъ больше будетъ кривизна дуги, описываемой чечевицей и темъ больше будетъ вышина свободнаго паденiя, при одинаковомъ размере дуги, т. е. при одномъ и том-же пройденномъ пространстве. Последствiемъ этого действiя силы тяжести на более короткiе маятники является то, что ихъ качанiя совершаются въ более короткое время. Число колебанiй маятниковъ въ известный промежутокъ времени не возростаетъ пропорцiонально тому, насколько они укорачиваются, а длины двухъ маятниковъ обратно пропорцiональны квадратамъ числа ихъ колебанiй. Если напримеръ одинъ маятникъ делаетъ два размаха, въ то время, какъ другой сделаетъ одинъ, то последнiй не въ два, а въ четыре раза длиннее перваго.

Если же одинъ маятникъ сделаетъ два размаха, а другой въ то-же время три, то ихъ длины относятся какъ (3 × 3) : (2 × 2) или какъ 9 : 4. Когда длина одного маятника и промежутокъ времени его колебанiя известны, то мы имеемъ возможность для любого числа колебанiй въ известный промежутокъ времени найти соответствующую длину маятника. Длина маятниковъ математически установлена. Секундный маятникъ, который въ одну минуту долженъ сделать 60 размаховъ, имеетъ длину 994 м/м, почти одинъ метръ.

При этомъ нужно обратить вниманiе, что размахомъ маятника считается движенiе его въ одну сторону, движенiе-же туда и обратно принимается за два размаха. Предположимъ, что мы должны найти длину маятника, который въ минуту делалъ бы 72 размаха. Число размаховъ секунднаго маятника относится къ числу размаховъ маятника, длину котораго мы ищемъ, какъ 60 : 72 или 5 : 6. Длина маятниковъ обратно пропорцiональна квадратамъ изъ этихъ чиселъ, т. е. какъ 36 : Поэтому, сколько разъ въ секундномъ маятнике содержится 36 единицъ меры, столько же разъ должны въ другомъ содержаться 25 единицъ той-же меры.

Следовательно, 994 нужно помножить на 25 и делить на 36 — получится съ малымъ 690 м/м, длина желаемаго маятника. Но вышеприведённые примеры служатъ основанiемъ лишь математическаго маятника (это тяжёлая точка, привешанная къ невесомой нитке).

На практике такого маятника не существуетъ. Масса какого-либо тела не можетъ сосредоточиться въ одной точке; въ особенности весъ стержня маятника действуетъ такъ, будто каждая частица его — отдельный маятникъ, следовательно, чемъ ближе частица къ точке привеса, темъ больше она стремится ускорить движенiе; значитъ, соразмерно тяжести стержня, движенiе всего маятника немного ускоряется, такъ что для уравненiя нужно сделать его немного длиннее. Вышеприведённыя размеры считаются отъ центра тяжести до точки привеса. Центръ тяжести въ маятнике съ лёгкимъ стержнемъ находимъ приблизительно въ точке опоры, если его на каком-либо остромъ ребре въ горизонтальномъ положенiи удержать въ равновесiи.

55.

Переходя теперь къ часовымъ механизмамъ, считаю нелишнимъ сказать несколько словъ въ назиданiе. Каждые доверенные намъ часы должны составлять для насъ сокровище, которое следуетъ оберегать, чтобы оно по нашей вине не теряло ценности или красоты вида. Потому мы должны крайне избегать соскальзыванiя отвёртки при развинчиванiи винтовъ и неряшливаго употребленiя инструментовъ, чтобы не сделать царапинъ. Если-же случилось несчастье при работе — по неосторожности сломать какую-либо часть механизма, которую не въ силахъ заменить другою, такой же чистой отделки, какъ и прежняя, то не должно прибегать къ фушерству. Часто бываетъ, что вследствiе одной маленькой неудачи по неопытности попортятъ весь механизмъ; при такихъ случаяхъ будетъ гораздо добросовестнее, если обратимся къ более опытному мастеру съ просьбой помочь.

Теперь последовательно пройдёмъ отдельныя части механизма маятничныхъ часовъ, чтобы ознакомиться съ ихъ значенiемъ и узнать, какимъ условiямъ они должны соответствовать, чтобы правильно и на продолжительное время выполнять своё назначенiе.

56. О двигающей силе.

Двигающая сила более равномерно передаётся колёсному механизму при помощи гири, которая тянетъ за конецъ струны, другой конецъ которой прикрепляется къ струнному барабану. Последнiй накрепко насаженъ на валикъ, удлиненiя котораго проходятъ черезъ платины; одинъ конецъ удлиненiя валика запиленъ квадратно и служитъ для завода посредствомъ ключа. При заводе струна наматывается прилегающими одинъ къ другому оборотами на барабанъ. Гиря во всё время своего действiя, т. е. отъ одного завода до следующаго, приводитъ часовой механизмъ въ движенiе равномерной силой. На тот-же валикъ, на который насаженъ барабанъ, насажено также и барабанное колесо, которое прилегаетъ къ последнему; оно должно свободно вращаться на валике, но безъ всякаго хлябанья. Для того, чтобы означенное колесо вращалось вместе съ барабаномъ, приводимымъ въ движенiе гирею, къ нему плотно приделано другое меньшее колесо, имеющее косые зубцы, такъ называемое шперрадъ. Зубцы этого колеса захватываетъ шперкегель (собачка), привинченный къ барабанному колесу. Пружина, такъ называемый шперфедеръ, слегка нажимая на шперкегель, прижимаетъ последнiй къ шперраду такъ, что онъ при заводе, скользя по зубцамъ его, впадаетъ въ каждый ихъ промежутокъ и по окончанiи завода, упираясь въ одинъ изъ косыхъ зубцовъ, не даётъ барабану поворачиваться въ обратную сторону. Въ общемъ это приспособленiе называется гешперъ. При ходе часовъ, барабанъ и барабанное колесо должны вращаться вместе, какъ будто они составляютъ одно целое.

Часы, длина футляровъ которыхъ не допускаетъ примененiя гирь, приводятся въ движенiе посредствомъ эластичной пружины. Она имеетъ форму спирали и помещается внутри пружиннаго барабана, къ стенке котораго она прилегаетъ въ развёрнутомъ виде; наружный конецъ ея прицепленъ къ крючку, вделанному въ стенку барабана. Черезъ пружинный барабанъ также проходитъ валикъ, на которомъ онъ, въ противоположность вышеописанному струнному барабану, свободно вращается. Означенный валикъ по средине имеетъ утолщенiе (федеркерн); на одномъ, удлинённомъ, конце валика напилены четыре грани для завода посредствомъ ключа. Федеркернъ имеетъ также крючекъ, къ которому прицепленъ внутреннiй конецъ пружины.

При заводе пружина наматывается на федеркернъ, и по мере наматыванiя на последнiй она отделяется отъ стенокъ барабана. Благодаря ея эластичности она стремится принять прежнее положенiе и потому тянетъ барабанъ въ одну сторону, а федеркернъ въ противоположную. Барабанныя колёса съ барабанами этого типа составляютъ одно целое. Гешперъ при такомъ устройстве находится снаружи платинъ.

57. Гешперъ.

Займёмся разсмотренiемъ такого гешпера, который находится снаружи платинъ, и благодаря этому бросается въ глаза до разборки часовъ. Шперрадъ, имея квадратное отверстiе, насаживается на заводную ось и придерживается сверху клобеномъ. Шперкегель привинченъ къ платинке винтомъ, имеющимъ анзатцъ, такъ что онъ свободно можетъ вращаться, как-бы плотно не былъ привинченъ. Его свободное вращенiе необходимо для того, чтобы онъ, нажимаемый хотя и слабой пружиной, западалъ въ промежутки зубцовъ шперрада. Особенно важно определить точку на окружности колеса, где долженъ западать шперкегель. Подвигающая или удерживающая сила действуетъ на окружность круга темъ сильнее, чемъ больше ея направленiе будетъ приближаться къ касательной, потому что она действуетъ при этомъ на самый длинный рычагъ, представляемый радiусомъ круга. Двигающая по другому направленiю сила действуетъ на меньшiй рычагъ и потому должна быть сравнительно сильнее, чтобы силу, приводящую кругъ въ движенiе, удержать въ равновесiи. На рисунке, таб. III фиг. 1, линiя ab есть касательная, плечо рычага для действующей по этому направленiю силы есть радiусъ db. Сопротивленiе, действующее по направленiю ac, должно испытать гораздо большее давленiе, потому что принятый при этомъ къ соображенiю рычагъ df много короче, чемъ db.

Изъ вышеизложеннаго становится яснымъ, какое положенiе шперкегель долженъ иметь по отношенiю къ шперраду. Въ фиг. 2 таб. III показано такое правильное положенiе шперкегеля. При такомъ положенiи давленiе на него и его винтъ, съ одной стороны, и заводной валикъ, съ другой стороны, будетъ доведено до минимума. Надлежащую длину шперкегеля легко определить, если представимъ себе, что линiи ba и bf фиг. 2 должны образовать стороны прямого угла. Шперкегель не долженъ захватывать зубцы за определённой точкой, иначе сила заводной пружины будетъ вытеснять его изъ шперрада, по мере того, какъ трущiеся части сгладятся. Пружине (шперфедеру) не следуетъ придавать удерживающее значенiе, она напротивъ должна быть возможно слабая, такъ что, действуя около точки движенiя шперкегеля, производила бы на него столь лёгкое давленiе, чтобы онъ съ самымъ незначительнымъ тренiемъ скользилъ по зубцамъ шперрада. Конечно при этомъ не следуетъ переходить границы, — чрезмерно слабая пружина сделала-бы действiе гешпера сомнительнымъ. Действующая плоскость зубца шперрада должна совпадать съ дiaметромъ его. Более косой зубецъ недостаточно устойчивъ, а более тупой способствовал-бы выскальзыванiю шперкегеля. Конецъ последняго долженъ аккуратно приходиться въ промежутки зубцовъ шперрада. Особенно следуетъ избегать, чтобы не только однимъ концамъ зубцовъ пришлось выдерживать всё давленiе, произведённое заводной пружиной, вследствiе чего они бы скоро попортились. Какъ вообще все боковые плоскости шперрада и шперкегеля должны быть перпендикулярными къ ихъ поверхности, такъ въ особенности действующiя плоскости, чтобы вследствiе действiя косыхъ плоскостей шперрадъ не могъ сдвинуть шперкегель на бокъ и проходить около него. Шперкегель долженъ быть стальной, закаленный и отпущенъ въ синiй цветъ. Шперрадъ при достаточно большомъ объёме и толщине можетъ быть изъ меди, потому что действующiя зубцы его постоянно меняются. Какъ выше сказано, шперкегель на плотно завинченномъ винте долженъ свободно вращаться. Оставить винтъ шперкегеля не совершенно плотно завинченнымъ было бы грубымъ упущенiемъ, потому что при движенiяхъ шперкегеля винтъ мог-бы совершенно выскочить; натянутая заводная пружина черезъ это моментально спустится и происходящiй при этомъ сильный ударъ можетъ причинить часовому механизму значительный вредъ. Кроме сего необходимо отверстiе въ шперкегеле оставить немного больше толщины анзатца винта, на которомъ онъ вращается, такъ чтобы шперкегель имел-бы незначительную свободу движенiя взадъ и вперёдъ. При такихъ условiяхъ шперкегель, достигнувъ кончика зубца, моментально спадётъ. Если-же шперкегель не будетъ иметь свободы и вследствiе этого не можетъ податься немного назадъ, то легко можетъ случиться, что онъ не впадётъ въ промежутки зубцовъ, а зацепитъ самый кончикъ зубца и, не въ силахъ въ такомъ положенiи препятствовать обратному вращенiю шперрада, будетъ при заводе постоянно срываться, что очень пагубно действуетъ на гешперъ.

При барабанахъ, на которыя действуетъ гиря, шперрадъ можно устроить сравнительно большаго размера; это конечно способствуетъ уменьшенiю давленiя на шперкегель, потому что онъ действуетъ более длинное плечо рычага. Въ остальном-же этотъ гешперъ долженъ быть устроенъ на тех-же началахъ, какъ и вышеописанный.


7 Слово «неправильных» следуетъ понимать въ томъ смысле, что число зубцовъ колеса не делится безъ остатка на число зубцовъ соответствующей шестерни.

Tags: Курсъ часоваго мастерства
Subscribe
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments